Oral glucose-lowering agents in type 2 diabetes mellitus – an update

Key messages

1. Establish patient-centred glycaemic targets.
2. Individualise treatment plans based on drug and patient profiles.
3. Select metformin as the initial glucose-lowering agent as it has long-term efficacy and safety data.
4. Use second generation sulfonylureas when metformin is unsuitable or insufficient in achieving control. Avoid chlorpropamide and glibenclamide as they cause more hypoglycaemia than other sulfonylureas.
5. SGLT-2 inhibitors are appropriate for patients who are at risk of hypoglycaemia, are overweight, or with cardiovascular disease.
6. Reserve DPP-4 inhibitors for patients with renal impairment.

Manage blood glucose together with other cardiovascular risk factors

A major focus in managing type 2 diabetes mellitus (T2DM) is to maintain glycaemic control while minimising risk of hypoglycaemia and other adverse events. Optimal glycaemic control is paramount in reducing microvascular complications.1-3

T2DM increases risk of cardiovascular disease (CVD). Intensive glycaemic control early in the course of T2DM can reduce the risk of future cardiac events and mortality,4 but may not improve cardiovascular outcomes in patients with long-standing diabetes and those with increased hypoglycaemia risk.5-7 Therefore, a comprehensive care plan involving blood pressure and lipid control, smoking prevention or cessation, weight management and healthy lifestyle measures is necessary.
Establish patient-centred glycaemic targets

Establish glycaemic targets with patients, taking into account patient and disease factors (Table 1). Other modifiable factors to consider include patients’ attitudes towards therapy and the availability of patient support resources.

For most adults, HbA1c targets of < 7.0% are reasonable. However, lower targets of < 6.5% may be appropriate in some patients if these can be achieved without significant hypoglycaemia.

<table>
<thead>
<tr>
<th>Patient and disease factors</th>
<th>More stringent</th>
<th>Less stringent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of hypoglycaemia and adverse effects</td>
<td>Low (e.g. younger age)</td>
<td>High (e.g. elderly or frail)</td>
</tr>
<tr>
<td>Disease duration</td>
<td>Short</td>
<td>Long-standing</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>Long</td>
<td>Short</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>Absent</td>
<td>few/mild</td>
</tr>
</tbody>
</table>

Adapted from the American Diabetes Association, Standards of Medical Care in Diabetes, 2017.8

Individualise treatment plans

Individualise treatment plans by considering drug and patient profiles (Figure 1).

Figure 1. Achieving glycaemic control in adults with T2DM

1. Degree of hyperglycaemia
 - Determine patients’ blood glucose levels or HbA1c.
 - Assess for clinical features that warrant use of insulin:
 » symptomatic hyperglycaemia
 » unexplained recent weight loss irrespective of initial weight
 » ketonuria
 » diabetic ketoacidosis

2. Goals
 - Establish goals such as HbA1c targets with patients, taking into account various patient and disease factors (Table 1).
 - Determine how far patients’ current HbA1c levels are from the targets.

3. Treatment options
 - Asymptomatic
 - < 9%
 - Lifestyle intervention, Pharmacotherapy
 - ≥ 9%
 - Dual/triple therapy or insulin + Lifestyle intervention
 - Symptomatic
 - Start insulin + Lifestyle intervention

Individualise treatment plans by considering:
- Efficacy (e.g. HbA1c lowering, microvascular and macrovascular outcomes)
- Side effect profile, tolerability and long-term safety data
- Cost and cost-effectiveness
- Patient characteristics including body weight, comorbidities and preferences (e.g. oral vs injection)

4. Regular monitoring
 - Patients with good glycaemic control: review at least every 6 months.
 - Patients with suboptimal glycaemic control or complications: review more frequently to optimise their therapeutic regimens.
Oral glucose-lowering agents

When lifestyle intervention (i.e. healthy diet, physical activity, weight control) is insufficient in achieving glycaemic control, initiate glucose-lowering agents whilst continuing lifestyle intervention.

Oral agents are preferred over injections due to convenience and acceptability. However, do not delay insulin therapy in patients with symptomatic hyperglycaemia, unexplained recent weight loss irrespective of initial weight, ketonuria or diabetic ketoacidosis.

As the duration of diabetes increases, insulin resistance develops and pancreatic β-cell function progressively declines. Multiple glucose-lowering agents are required to achieve and maintain glycaemic control. Combining agents with different mechanisms of action and side effects can enhance glycaemic control and tolerability.

Metformin (MET) – Preferred initial glucose-lowering agent

Metformin has good HbA1c lowering (1 – 1.5%) and long-term safety data. Titrate the dose gradually and advise patients to take metformin with or after meals to reduce gastrointestinal side effects, such as nausea, vomiting and diarrhoea.

Use metformin with caution in patients with renal impairment and those at risk of lactic acidosis (e.g. patients with hepatic impairment or heart failure).

Long-term use of metformin may be associated with vitamin B12 deficiency. In patients with established anaemia or peripheral neuropathy, monitor B12 levels as part of routine care.8

Sulfonylureas (SU) – Use second generation sulfonylureas

Sulfonylureas are typically the next class of drugs used when metformin is unsuitable or insufficient in achieving control. Sulfonylureas lower HbA1c by 1 – 1.5%, are affordable and have long-term safety data.

However, sulfonylureas cause weight gain and pose a risk of hypoglycaemia, especially in the elderly and those with renal or hepatic impairment.

Use second generation sulfonylureas, such as glipizide and gliclazide, which are less likely to cause hypoglycaemia as compared to other sulfonylureas. Avoid chlorpropamide and glibenclamide which have higher hypoglycaemia risks.9

Modified-release (MR) gliclazide and glimepiride are taken once daily and may improve patient adherence. However, these tablets are costlier compared to glipizide or immediate-release (IR) gliclazide.
SGLT-2 inhibitors

– For patients who are at risk of hypoglycaemia, are overweight, or with cardiovascular disease

Consider sodium-glucose cotransporter-2 (SGLT-2) inhibitors in patients who cannot tolerate sulfonylureas or when hypoglycaemia is a concern. They lower HbA1c (0.6 – 0.9%), body weight and blood pressure, and may benefit those who are overweight or obese.

SGLT-2 inhibitors have been shown to improve cardiovascular outcomes in T2DM patients. EMPA-REG and CANVAS results show a reduction in heart failure hospitalisations in T2DM patients with established CVD.10,11 Results from CVD-REAL suggest that these cardiovascular benefits are a class effect and extend to patients at the lower end of the cardiovascular risk spectrum.12 Completion of DECLARE TIMI-58 trial (dapagliflozin) will provide more clarity on this.

SGLT-2 inhibitors have been associated with an increased risk of urinary and genital tract infections, diabetic ketoacidosis (DKA) and lower limb amputations (canagliflozin).11 As of 3rd January 2017, thirteen DKA cases have been reported locally (eight with canagliflozin, two with dapagliflozin and three with empagliflozin. Note different utilisation rates for each agent).13

Avoid SGLT-2 inhibitors in patients at risk of DKA (e.g. suspected T1DM, severe hyperglycaemia, recent surgery, infection, low caloric or carbohydrate intake, long-standing T2DM or pancreatic insufficiency).

Always counsel patients to seek urgent medical attention if they have symptoms of DKA and pain in their lower limbs. Patients on SGLT-2 inhibitors should also observe good genital hygiene.

SGLT-2 inhibitors work by blocking renal glucose reabsorption and are not recommended for patients with severe renal impairment (Table 2). Consider them as a class and choose the lowest cost option.

DPP-4 inhibitors

– For patients with renal impairment

Dipeptidyl peptidase-4 (DPP-4) inhibitors have similar HbA1c lowering (0.5 – 0.8%) as SGLT-2 inhibitors. They are weight neutral, well tolerated and rarely cause hypoglycaemia. Local cost-effectiveness analyses have shown that MET + DPP-4 inhibitor is not cost-effective compared to MET + SU or MET + SGLT-2 inhibitor. However, consider DPP-4 inhibitors for patients unable to use sulfonylureas (i.e. hypoglycaemia or weight gain) or SGLT-2 inhibitors (i.e. renal or other side effects).

Long-term cardiovascular outcome trials suggest no significant differences in composite cardiovascular endpoints. However, saxagliptin and alogliptin may increase heart failure hospitalisations, particularly in patients with heart or renal disease. The United States Food and Drug Administration (FDA) has issued safety warnings on heart failure with the use of these drugs.15

DPP-4 inhibitors are suitable for patients with renal impairment with dose adjustments as shown in Table 3. Linagliptin does not require dose adjustments for patients with declining renal functions.

Other glucose-lowering agents

Other oral glucose-lowering agents include meglitinides, thiazolidinediones and alpha-glucosidase inhibitors. Their safety and cost limit their widespread use. Table 4 lists all the oral glucose-lowering agents registered in Singapore while Table 5 lists their efficacy, safety and cost.

Using fixed-dose combinations, such as a sulfonylurea, SGLT-2 inhibitor or DPP-4 inhibitor with metformin, reduce pill burden and improve patient adherence. However, they are less flexible for dose titration.

Glucagon-like peptide-1 (GLP-1) analogues are not widely used as they are only available as injections and are expensive. They activate GLP-1 receptors, increase insulin secretion, decrease glucagon secretion, slow gastric emptying and promote satiety. Liraglutide has been shown to improve cardiovascular outcomes.16

Figure 2 provides an algorithm for glucose-lowering.
Table 4. Oral glucose-lowering agents registered in Singapore

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Single agent (Brand)</th>
<th>Fixed-dose combinations (Brand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Biguanides</td>
<td>• Metformin</td>
<td>As listed below</td>
</tr>
<tr>
<td>2. Sulfonylureas*</td>
<td>• Gliclazide</td>
<td>Glimepiride + MET (Amaryl M)</td>
</tr>
<tr>
<td></td>
<td>• Glimepiride (Amaryl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Glipizide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tolbutamide</td>
<td></td>
</tr>
<tr>
<td>3. SGLT-2 inhibitors</td>
<td>• Canagliflozin (Invokana)</td>
<td>Dapagliflozin + MET (Xigduo XR)</td>
</tr>
<tr>
<td></td>
<td>• Dapagliflozin (Forxiga)</td>
<td>Empagliflozin + MET (Jardiance Duo)</td>
</tr>
<tr>
<td></td>
<td>• Empagliflozin (Jardiance)</td>
<td></td>
</tr>
<tr>
<td>4. DPP-4 inhibitors</td>
<td>• Alogliptin (Nesina)</td>
<td>Alogliptin + pioglitazone (Oseni)</td>
</tr>
<tr>
<td></td>
<td>• Linagliptin (Trajenta)</td>
<td>Linagliptin + MET (Trajenta Duo)</td>
</tr>
<tr>
<td></td>
<td>• Saxagliptin (Onglyza)</td>
<td>Saxagliptin + MET (Kombiglyze XR)</td>
</tr>
<tr>
<td></td>
<td>• Sitagliptin (Januvia)</td>
<td>Sitagliptin + MET (Janumet, Janumet XR)</td>
</tr>
<tr>
<td></td>
<td>• Vildagliptin (Galvus)</td>
<td>Vildagliptin + MET (Galvus Met)</td>
</tr>
<tr>
<td>5. Meglitinides</td>
<td>• Nateglinide (Starlix)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Repaglinide (Novonorm)</td>
<td></td>
</tr>
<tr>
<td>6. Thiazolidinediones</td>
<td>• Pioglitazone (Actos)</td>
<td>Alogliptin + pioglitazone (Oseni)</td>
</tr>
<tr>
<td></td>
<td>• Rosiglitazone (Avandia)</td>
<td></td>
</tr>
<tr>
<td>7. Alpha-glucosidase inhibitors</td>
<td>• Acarbose (Glucobay)</td>
<td></td>
</tr>
</tbody>
</table>

Active ingredients in **BOLD** denote availability on government subsidy list. *Chlorpropamide and glibenclamide are not included as they should be avoided due to their risk of hypoglycaemia. List updated as of 3rd May 2017.

MET, metformin
Table 5. Properties of oral glucose-lowering agents

<table>
<thead>
<tr>
<th></th>
<th>Biguanides</th>
<th>Sulfonylureas</th>
<th>SGLT-2 inhibitors</th>
<th>DPP-4 inhibitors</th>
<th>Meglitinides</th>
<th>Thiazolidinediones</th>
<th>Alpha-glucosidase inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>How do they work?</td>
<td>Decrease hepatic glucose production</td>
<td>Increase insulin secretion</td>
<td>Inhibit SGLT-2 in the proximal tubules, block glucose reabsorption, ↑ glucosuria (act independent of insulin)</td>
<td>Inhibit DPP-4 activity, prolong incretin action, ↑ insulin secretion & ↓ glucagon secretion (glucose-dependent)</td>
<td>Increase insulin secretion</td>
<td>Increase insulin sensitivity</td>
<td>Slow intestinal carbohydrate absorption</td>
</tr>
<tr>
<td>HbA1c lowering</td>
<td>1 – 1.5%</td>
<td>1 – 1.5%</td>
<td>0.6 – 0.9%</td>
<td>0.5 – 0.8%</td>
<td>0.5 – 1.0%</td>
<td>0.5 – 1.5%</td>
<td>0.5 – 0.8%</td>
</tr>
<tr>
<td>Patient affordability</td>
<td>$</td>
<td>$</td>
<td>$$$</td>
<td>$$$</td>
<td>$$$</td>
<td>$$$</td>
<td>$$$</td>
</tr>
<tr>
<td>What to watch out for?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoglycaemia</td>
<td>Neutral</td>
<td>Moderate</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Mild</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
<tr>
<td>Weight</td>
<td>Neutral or loss (mild)</td>
<td>Gain</td>
<td>Loss</td>
<td>Neutral</td>
<td>Gain (mild)</td>
<td>Gain</td>
<td>Neutral</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>⇒ CVD events</td>
<td>–</td>
<td>⇒ CVD events & mortality</td>
<td>↑ HF hospitalisations (saxagliptin, alogliptin)¹⁵</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Renal</td>
<td>Avoid if eGFR < 30, reduce dose if eGFR < 45</td>
<td>Hypoglycaemia risk</td>
<td>Not recommended in severe impairment</td>
<td>Dose adjustment (except linagliptin)</td>
<td>Hypoglycaemia risk</td>
<td>Fluid retention</td>
<td>–</td>
</tr>
<tr>
<td>Other considerations</td>
<td>GI effects, vitamin B12 deficiency, lactic acidosis (rare), avoid in hypoxic states</td>
<td>–</td>
<td>–</td>
<td>DKA (rare), volume depletion or hypotension (especially with patients on diuretics, ACE-Is, ARBs), ↑ genitourinary infections, lower limb amputations (canagliflozin)</td>
<td>Skin reactions, joint pain, caution in patients with history of pancreatitis</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*HbA1c lowering values for monotherapy. The efficacy in dual and triple therapy is not additive and may be impacted by dose, duration of disease and baseline glycaemia.

¹Price range is indicative for the drug class factoring in subsidy. At the time of publication, dapagliflozin is the only SGLT-2 inhibitor listed on Medication Assistance Fund (MAF).

ACE-Is, angiotensin-converting enzyme inhibitors; ARBs, angiotensin II receptor blockers; CVD, cardiovascular disease; DKA, diabetic ketoacidosis; eGFR, estimated glomerular filtration rate; GI, gastrointestinal; HF, heart failure; SU, sulfonylurea.

Note: Table provides a list of some of the common and/or more serious adverse effects. Refer to the product insert for full list of side effects.
If HbA1c not at target

INITIAL THERAPY

Metformin is the usual first-line agent unless contraindicated or not tolerated. Acceptable alternatives:

- Sulfonylureas
- SGLT-2 inhibitors
- DPP-4 inhibitors
- Meglitinides
- Thiazolidinediones
- Alpha-glucosidase inhibitors
- GLP-1 analogues
- Insulin*

FIRST INTENSIFICATION

Metformin or other first-line agent PLUS, any of:

- Sulfonylureas
- SGLT-2 inhibitors
- DPP-4 inhibitors
- Meglitinides
- Thiazolidinediones
- Alpha-glucosidase inhibitors
- GLP-1 analogues
- Insulin*

If HbA1c not at target

SECOND INTENSIFICATION

Metformin (or other first-line agent) + second-line agent PLUS, any of:

- Sulfonylureas
- SGLT-2 inhibitors
- DPP-4 inhibitors
- Meglitinides
- Thiazolidinediones
- Alpha-glucosidase inhibitors
- GLP-1 analogues
- Insulin*

Indicates usual therapy (based on effectiveness, safety or cost-effectiveness)

*Insulin has the greatest glucose-lowering efficacy. It should be initiated for patients:
 - with marked hyperglycaemia and/or who are symptomatic.
 - who failed to reach, or are unlikely to reach their HbA1c targets with existing treatment or with the addition of another agent.
About the Agency

The Agency for Care Effectiveness (ACE) is the national health technology assessment agency in Singapore residing within the Ministry of Health (MOH). ACE develops evidence-based “Appropriate Care Guides” or ACGs to guide a specific area of clinical practice. ACGs are aimed at complementing MOH Clinical Practice Guidelines when these are available, by providing additions and updates as reflected in the evidence at the time of development, and incorporating cost-effectiveness considerations where relevant. The ACGs are not exhaustive of the subject matter. When using the ACGs, the responsibility for making decisions appropriate to the circumstances of the individual patient remains with the healthcare professional. This ACG will be reviewed 3 years after publication, or earlier, if new evidence emerges that requires substantive changes to the recommendations.

Find out more about ACE at www.ace-hta.gov.sg/about

© Agency for Care Effectiveness, Ministry of Health, Republic of Singapore
All rights reserved. Reproduction of this publication in whole or in part in any material form is prohibited without the prior written permission of the copyright holder. Application to reproduce any part of this publication should be addressed to:

Head (Evaluation)
Agency for Care Effectiveness
Email: ACE_HTA@moh.gov.sg

In citation, please credit the Ministry of Health when you extract and use the information or data from the publication.

Driving better decision-making in healthcare

References

EXPERT GROUP

Lead discussant
Dr. Goh Su-Yen (SGH)

Chairperson
A/Prof. Michelle Jong (TTSH)

Group members
Ms. Debra Chan (TTSH)
Dr. Khoo Chin Meng (NUHS)
A/Prof. Joyce Lee (NUS)
Ms. Lee Hwee Khim (SHP)
Dr. Lim Hui Ling (International Medical Clinic)
Ms. Ng Soh Mui (NHGP)
Dr. Phua Eng Joo (KTPH)
Dr. Darren Seah (NHGP)
Dr. Gilbert Tan (SHP)
Dr. Tham Tat Yean (Frontier Healthcare Group)
Ms. Pauline Xie (NHGP)

Correction added after publication on 3 July 2017: the affiliation for A/Prof. Joyce Lee was corrected to NUS.